|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of Graph in netkit |
---|
Methods in netkit that return Graph | |
---|---|
Graph |
EdgeTransformer.readEdges(java.io.Reader reader,
EdgeType edgeType)
|
Methods in netkit with parameters of type Graph | |
---|---|
void |
GraphStat.printDegreeDistribution(Graph graph)
|
void |
GraphStat.printGlobalInfo(Graph graph)
|
void |
GraphStat.printNodeStatistics(Graph graph)
|
static void |
EdgeTransformer.pruneLess(Graph graph,
EdgeType edgeType,
double pruneless)
|
static void |
EdgeTransformer.pruneMinK(Graph graph,
EdgeType edgeType,
int minK,
boolean reverse)
|
static void |
EdgeTransformer.pruneMore(Graph graph,
EdgeType edgeType,
double prunemore)
|
static void |
EdgeTransformer.pruneTopK(Graph graph,
EdgeType edgeType,
int topK,
boolean reverse)
|
static void |
EdgeTransformer.reweight(Graph graph,
Edge[] edges,
double reweight)
|
static void |
EdgeTransformer.reweight(Graph graph,
EdgeType edgeType,
double reweight)
|
void |
GraphStat.run(Graph graph)
|
void |
GraphStat.saveClusters(Graph graph)
|
void |
GraphStat.saveComponents(Graph graph)
|
void |
GraphStat.saveGraph(Graph graph)
|
void |
EdgeTransformer.transform(Graph graph,
EdgeType edgeType)
|
Uses of Graph in netkit.classifiers |
---|
Fields in netkit.classifiers declared as Graph | |
---|---|
protected Graph |
ClassifierImp.graph
|
Methods in netkit.classifiers that return Graph | |
---|---|
static Graph |
DataSampler.buildGraph()
|
Graph |
NetworkLearning.getGraph()
|
Graph |
NetworkLearner.getGraph()
|
Graph |
Estimate.getGraph()
|
Graph |
DataView.getGraph()
|
Graph |
Classification.getGraph()
|
Methods in netkit.classifiers with parameters of type Graph | |
---|---|
void |
ClassifierImp.induceModel(Graph graph,
DataSplit split)
|
void |
Classifier.induceModel(Graph graph,
DataSplit split)
|
void |
NetworkLearning.setGraph(Graph g)
|
Constructors in netkit.classifiers with parameters of type Graph | |
---|---|
Classification(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute)
|
|
DataView(Graph g,
java.lang.String nodeType,
AttributeCategorical attrib)
|
|
DataView(Graph g,
java.lang.String nodeType,
AttributeCategorical attrib,
long seed)
|
|
DataView(Graph g,
java.lang.String nodeType,
AttributeCategorical attrib,
long seed,
boolean replacement,
boolean stratified,
boolean pruneZeroKnowledge)
|
|
DataView(Graph g,
java.lang.String nodeType,
AttributeCategorical attrib,
long seed,
boolean replacement,
boolean stratified,
boolean pruneZeroKnowledge,
boolean pruneSingletons,
boolean sampleUnknown)
|
|
Estimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute)
|
Uses of Graph in netkit.classifiers.aggregators |
---|
Methods in netkit.classifiers.aggregators with parameters of type Graph | |
---|---|
static void |
SharedNodeInfo.initialize(Graph g)
Assume that we will be doing aggregation over this particular graph until further notice |
Uses of Graph in netkit.classifiers.io |
---|
Methods in netkit.classifiers.io with parameters of type Graph | |
---|---|
void |
ReadClassificationGeneric.readClassification(Graph graph,
Classification labels,
java.io.File input)
Reads in a set of classifications from the given file, assuming that each line is of the form 'nodeID,class'. |
void |
ReadClassification.readClassification(Graph graph,
Classification labels,
java.io.File input)
Read from a given file a estimate of classifications for nodes in the given graph. |
Classification |
ReadClassificationGeneric.readClassification(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Creates a new Classification object based on the graph, nodeType and attribute and then calls the generic readClassification method. |
Classification |
ReadClassification.readClassification(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Read from a given file a estimate of classifications for nodes in the given graph. |
void |
ReadEstimateRainbow.readEstimate(Graph graph,
Estimate estimates,
java.io.File input)
Reads in a set of estimates from the given file, assuming that each line is of the form: nodeID trueclass class:score ... |
void |
ReadEstimate.readEstimate(Graph graph,
Estimate estimates,
java.io.File input)
Read from a given file estimates for nodes in the given graph. |
Estimate |
ReadEstimateRainbow.readEstimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Create a new Estimate object and call the more general readEstimate method. |
Estimate |
ReadEstimate.readEstimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Read from a given file an estimate for nodes in the given graph. |
Uses of Graph in netkit.classifiers.nonrelational |
---|
Methods in netkit.classifiers.nonrelational with parameters of type Graph | |
---|---|
void |
UniformPrior.induceModel(Graph graph,
DataSplit split)
Makes a uniform prediction array---all classes are equally likely |
void |
MetaMultiplicative.induceModel(Graph graph,
DataSplit split)
Induce the model. |
void |
LocalWeka.induceModel(Graph graph,
DataSplit split)
Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified. |
void |
LocalMetaClassifier.induceModel(Graph graph,
DataSplit split)
This induces each of the local classifiers individually. |
void |
ExternalPrior.induceModel(Graph graph,
DataSplit split)
Inducing this model simply means to read the estimates from the input file. |
Uses of Graph in netkit.classifiers.relational |
---|
Methods in netkit.classifiers.relational with parameters of type Graph | |
---|---|
void |
WeightedVoteRelationalNeighbor.induceModel(Graph graph,
DataSplit split)
wvRN has no model, so this only initializes what needs to be done for laplace correction (in addition to whatever the superclass does). |
void |
NetworkWeka.induceModel(Graph graph,
DataSplit split)
Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified. |
void |
NetworkOnlyBayes.induceModel(Graph graph,
DataSplit split)
Induce the model by computing the counts for Prob(classIdx | neighborClassIdx) |
void |
NetworkMetaClassifier.induceModel(Graph graph,
DataSplit split)
This separately induces all the non-relational and relational classifiers in addition to any setup the super-class needs to do. |
void |
NetworkClassifierImp.induceModel(Graph graph,
DataSplit split)
This method induces a new prediction model. |
void |
MetaMultiplicative.induceModel(Graph graph,
DataSplit split)
Induce the model. |
void |
Harmonic.induceModel(Graph graph,
DataSplit split)
Harmonic has no model per se as its learning consists of computing the harmonic function which results in the predictions. |
void |
ClassDistribRelNeighbor.induceModel(Graph graph,
DataSplit split)
Induce the cdRN model by finding the 'prototypical' neighborhood for each class of nodes. |
Uses of Graph in netkit.graph |
---|
Fields in netkit.graph declared as Graph | |
---|---|
protected Graph |
AbstractAttributeMetaInfo.graph
|
Methods in netkit.graph that return Graph | |
---|---|
Graph |
Graph.clone()
|
Graph |
Graph.subGraph(java.util.Collection<Node> nodeSet)
Create a sub-graph consisting only of the given nodes and the edges between those nodes. |
Constructors in netkit.graph with parameters of type Graph | |
---|---|
AttributeCategoricalMetaInfo(AttributeCategorical attrib,
Attributes attributes,
Graph graph)
Construct an object of this type. |
|
AttributeMetaInfo(Attribute attrib,
Attributes attributes,
Graph graph)
Construct an object of this type. |
Uses of Graph in netkit.graph.edgecreator |
---|
Fields in netkit.graph.edgecreator declared as Graph | |
---|---|
protected Graph |
EdgeCreatorImp.graph
|
Methods in netkit.graph.edgecreator with parameters of type Graph | |
---|---|
void |
NormalizedNumericEdgeCreator.initialize(Graph graph,
java.lang.String nodeType,
int attributeIndex,
double attributeValue,
int maxEdges)
|
void |
EdgeCreatorImp.initialize(Graph graph,
java.lang.String nodeType,
int attributeIndex,
double attributeValue,
int maxEdges)
|
void |
EdgeCreator.initialize(Graph graph,
java.lang.String nodeType,
int attributeIndex,
double attributeValue,
int maxEdges)
Initialize this creator. |
void |
BaseCategoricalEdgeCreator.initialize(Graph graph,
java.lang.String nodeType,
int attributeIndex,
double attributeValue,
int maxEdges)
|
Uses of Graph in netkit.graph.io |
---|
Methods in netkit.graph.io that return Graph | |
---|---|
static Graph |
SchemaReader.readGDASchema(java.io.File nodeFile,
java.io.File edgeFile)
Overloaded entry point for SchemaReader.readGDASchema(Reader,Reader) |
static Graph |
SchemaReader.readGDASchema(java.io.Reader nodeReader,
java.io.Reader edgeReader)
Reads the Node and Edge information from GDA formatted input, constructs the data structures and instantiates all of the instance data. |
static Graph |
PajekGraph.readGraph(java.io.File pajekFile)
Overloaded entry point for PajekGraph.readGraph(Reader) |
static Graph |
NetkitGraph.readGraph(java.io.File schemafile)
|
static Graph |
PajekGraph.readGraph(java.io.Reader pajekReader)
Reads the Graph information from Pajek formatted input, constructs the data structures and instantiates all of the instance data. |
static Graph |
SchemaReader.readSchema(java.io.File file)
Overloaded entry point for SchemaReader.readSchema(Reader,String) |
static Graph |
SchemaReader.readSchema(java.io.Reader reader,
java.lang.String parentDirectory)
Reads the Graph information from a schema file, constructs the data structures and instantiates all of the instance data. |
static Graph |
SchemaReader.stressTest(int numFields,
int numNodes,
int numEdges)
This method conducts a stress test by creating a set of random nodes and edges and performs busy-work accessing the node and edge information. |
Methods in netkit.graph.io with parameters of type Graph | |
---|---|
static void |
NetkitGraph.printNetKitEdges(Graph graph,
java.io.PrintWriter pw,
java.lang.String edgeName)
|
static void |
NetkitGraph.printNetKitNodes(Graph graph,
java.io.PrintWriter pw,
java.lang.String nodeType)
|
static void |
NetkitGraph.printNetKitNodes(Graph graph,
java.io.PrintWriter pw,
java.lang.String nodeType,
boolean saveAttributes,
boolean appendStatistics)
|
static void |
EdgeReaderGDA.readEdges(java.io.Reader reader,
Graph graph,
EdgeType et)
Reads Edges from the supplied Reader and creates the corresponding Edges in the Graph; Edges are validated by the supplied EdgeType which must have identical source and destination Node types, and the Nodes these Edges refer to must already exist in the Graph. |
static void |
EdgeReaderRN.readEdges(java.io.Reader reader,
Graph graph,
EdgeType et1,
EdgeType et2)
Reads Edges from the supplied Reader and creates the corresponding Edges in the Graph; Edges are validated by the the supplied EdgeTypes and the Nodes these Edges refer to must already exist in the Graph. |
static void |
NodeReader.readNodes(Graph graph,
java.lang.String nodeType,
java.io.Reader reader,
boolean skipFirstLine)
This static method does the work of reading input data for the class. |
static void |
PajekGraph.saveGraph(Graph graph,
java.io.PrintWriter pw)
|
static void |
DotGraph.saveGraph(Graph graph,
java.io.PrintWriter pw)
|
static void |
PajekGraph.saveGraph(Graph graph,
java.io.PrintWriter pw,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
|
static void |
PajekGraph.saveGraph(Graph graph,
java.lang.String file)
|
static void |
NetkitGraph.saveGraph(Graph graph,
java.lang.String outputStem)
|
static void |
DotGraph.saveGraph(Graph graph,
java.lang.String file)
|
static void |
NetkitGraph.saveGraph(Graph graph,
java.lang.String outputStem,
boolean saveAttributes,
boolean appendStatistics)
|
static void |
PajekGraph.saveGraph(Graph graph,
java.lang.String file,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
Save the given graph as a pajek graph, to the given file, using the classification and estimate and label. |
static void |
NetkitGraph.saveNetKitEdges(Graph graph,
java.lang.String prefix,
java.lang.String edgeName)
|
static void |
NetkitGraph.saveNetKitNodes(Graph graph,
java.lang.String prefix,
java.lang.String nodeType)
|
static void |
NetkitGraph.saveNetKitNodes(Graph graph,
java.lang.String prefix,
java.lang.String nodeType,
boolean saveAttributes,
boolean appendStatistics)
|
static void |
SchemaWriter.writeSchema(Graph graph,
java.io.Writer writer,
java.util.Map<java.lang.String,java.lang.String> nodeTypeFiles,
java.util.Map<java.lang.String,java.lang.String> edgeTypeFiles)
Writes the Graph information in an extended ARFF format. |
Uses of Graph in netkit.inference |
---|
Methods in netkit.inference with parameters of type Graph | |
---|---|
void |
InferenceMethodListener.iterate(Graph g,
int[] unknown)
|
void |
InferenceMethod.notifyListeners(Graph g,
int[] unknown)
|
Uses of Graph in netkit.util |
---|
Fields in netkit.util declared as Graph | |
---|---|
Graph |
GraphMetrics.graph
|
Methods in netkit.util that return Graph | |
---|---|
Graph |
ModularityClusterer.getGraph()
|
Graph |
GraphView.getGraph()
|
Constructors in netkit.util with parameters of type Graph | |
---|---|
GraphMetrics(Graph g)
Compute metrics over all nodes in the graph |
|
GraphMetrics(Graph g,
java.lang.String nodeType)
Compute certain metrics only over nodes of the given node type |
|
GraphView(Graph graph)
|
|
ModularityClusterer(Graph g)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |