Uses of Class
netkit.graph.Graph

Packages that use Graph
netkit   
netkit.classifiers   
netkit.classifiers.aggregators   
netkit.classifiers.io   
netkit.classifiers.nonrelational   
netkit.classifiers.relational   
netkit.graph   
netkit.graph.edgecreator   
netkit.graph.io   
netkit.inference   
netkit.util   
 

Uses of Graph in netkit
 

Methods in netkit that return Graph
 Graph EdgeTransformer.readEdges(java.io.Reader reader, EdgeType edgeType)
           
 

Methods in netkit with parameters of type Graph
 void GraphStat.printDegreeDistribution(Graph graph)
           
 void GraphStat.printGlobalInfo(Graph graph)
           
 void GraphStat.printNodeStatistics(Graph graph)
           
static void EdgeTransformer.pruneLess(Graph graph, EdgeType edgeType, double pruneless)
           
static void EdgeTransformer.pruneMinK(Graph graph, EdgeType edgeType, int minK, boolean reverse)
           
static void EdgeTransformer.pruneMore(Graph graph, EdgeType edgeType, double prunemore)
           
static void EdgeTransformer.pruneTopK(Graph graph, EdgeType edgeType, int topK, boolean reverse)
           
static void EdgeTransformer.reweight(Graph graph, Edge[] edges, double reweight)
           
static void EdgeTransformer.reweight(Graph graph, EdgeType edgeType, double reweight)
           
 void GraphStat.run(Graph graph)
           
 void GraphStat.saveClusters(Graph graph)
           
 void GraphStat.saveComponents(Graph graph)
           
 void GraphStat.saveGraph(Graph graph)
           
 void EdgeTransformer.transform(Graph graph, EdgeType edgeType)
           
 

Uses of Graph in netkit.classifiers
 

Fields in netkit.classifiers declared as Graph
protected  Graph ClassifierImp.graph
           
 

Methods in netkit.classifiers that return Graph
static Graph DataSampler.buildGraph()
           
 Graph NetworkLearning.getGraph()
           
 Graph NetworkLearner.getGraph()
           
 Graph Estimate.getGraph()
           
 Graph DataView.getGraph()
           
 Graph Classification.getGraph()
           
 

Methods in netkit.classifiers with parameters of type Graph
 void ClassifierImp.induceModel(Graph graph, DataSplit split)
           
 void Classifier.induceModel(Graph graph, DataSplit split)
           
 void NetworkLearning.setGraph(Graph g)
           
 

Constructors in netkit.classifiers with parameters of type Graph
Classification(Graph graph, java.lang.String nodeType, AttributeCategorical attribute)
           
DataView(Graph g, java.lang.String nodeType, AttributeCategorical attrib)
           
DataView(Graph g, java.lang.String nodeType, AttributeCategorical attrib, long seed)
           
DataView(Graph g, java.lang.String nodeType, AttributeCategorical attrib, long seed, boolean replacement, boolean stratified, boolean pruneZeroKnowledge)
           
DataView(Graph g, java.lang.String nodeType, AttributeCategorical attrib, long seed, boolean replacement, boolean stratified, boolean pruneZeroKnowledge, boolean pruneSingletons, boolean sampleUnknown)
           
Estimate(Graph graph, java.lang.String nodeType, AttributeCategorical attribute)
           
 

Uses of Graph in netkit.classifiers.aggregators
 

Methods in netkit.classifiers.aggregators with parameters of type Graph
static void SharedNodeInfo.initialize(Graph g)
          Assume that we will be doing aggregation over this particular graph until further notice
 

Uses of Graph in netkit.classifiers.io
 

Methods in netkit.classifiers.io with parameters of type Graph
 void ReadClassificationGeneric.readClassification(Graph graph, Classification labels, java.io.File input)
          Reads in a set of classifications from the given file, assuming that each line is of the form 'nodeID,class'.
 void ReadClassification.readClassification(Graph graph, Classification labels, java.io.File input)
          Read from a given file a estimate of classifications for nodes in the given graph.
 Classification ReadClassificationGeneric.readClassification(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Creates a new Classification object based on the graph, nodeType and attribute and then calls the generic readClassification method.
 Classification ReadClassification.readClassification(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Read from a given file a estimate of classifications for nodes in the given graph.
 void ReadEstimateRainbow.readEstimate(Graph graph, Estimate estimates, java.io.File input)
          Reads in a set of estimates from the given file, assuming that each line is of the form: nodeID trueclass class:score ...
 void ReadEstimate.readEstimate(Graph graph, Estimate estimates, java.io.File input)
          Read from a given file estimates for nodes in the given graph.
 Estimate ReadEstimateRainbow.readEstimate(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Create a new Estimate object and call the more general readEstimate method.
 Estimate ReadEstimate.readEstimate(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Read from a given file an estimate for nodes in the given graph.
 

Uses of Graph in netkit.classifiers.nonrelational
 

Methods in netkit.classifiers.nonrelational with parameters of type Graph
 void UniformPrior.induceModel(Graph graph, DataSplit split)
          Makes a uniform prediction array---all classes are equally likely
 void MetaMultiplicative.induceModel(Graph graph, DataSplit split)
          Induce the model.
 void LocalWeka.induceModel(Graph graph, DataSplit split)
          Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified.
 void LocalMetaClassifier.induceModel(Graph graph, DataSplit split)
          This induces each of the local classifiers individually.
 void ExternalPrior.induceModel(Graph graph, DataSplit split)
          Inducing this model simply means to read the estimates from the input file.
 

Uses of Graph in netkit.classifiers.relational
 

Methods in netkit.classifiers.relational with parameters of type Graph
 void WeightedVoteRelationalNeighbor.induceModel(Graph graph, DataSplit split)
          wvRN has no model, so this only initializes what needs to be done for laplace correction (in addition to whatever the superclass does).
 void NetworkWeka.induceModel(Graph graph, DataSplit split)
          Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified.
 void NetworkOnlyBayes.induceModel(Graph graph, DataSplit split)
          Induce the model by computing the counts for Prob(classIdx | neighborClassIdx)
 void NetworkMetaClassifier.induceModel(Graph graph, DataSplit split)
          This separately induces all the non-relational and relational classifiers in addition to any setup the super-class needs to do.
 void NetworkClassifierImp.induceModel(Graph graph, DataSplit split)
          This method induces a new prediction model.
 void MetaMultiplicative.induceModel(Graph graph, DataSplit split)
          Induce the model.
 void Harmonic.induceModel(Graph graph, DataSplit split)
          Harmonic has no model per se as its learning consists of computing the harmonic function which results in the predictions.
 void ClassDistribRelNeighbor.induceModel(Graph graph, DataSplit split)
          Induce the cdRN model by finding the 'prototypical' neighborhood for each class of nodes.
 

Uses of Graph in netkit.graph
 

Fields in netkit.graph declared as Graph
protected  Graph AbstractAttributeMetaInfo.graph
           
 

Methods in netkit.graph that return Graph
 Graph Graph.clone()
           
 Graph Graph.subGraph(java.util.Collection<Node> nodeSet)
          Create a sub-graph consisting only of the given nodes and the edges between those nodes.
 

Constructors in netkit.graph with parameters of type Graph
AttributeCategoricalMetaInfo(AttributeCategorical attrib, Attributes attributes, Graph graph)
          Construct an object of this type.
AttributeMetaInfo(Attribute attrib, Attributes attributes, Graph graph)
          Construct an object of this type.
 

Uses of Graph in netkit.graph.edgecreator
 

Fields in netkit.graph.edgecreator declared as Graph
protected  Graph EdgeCreatorImp.graph
           
 

Methods in netkit.graph.edgecreator with parameters of type Graph
 void NormalizedNumericEdgeCreator.initialize(Graph graph, java.lang.String nodeType, int attributeIndex, double attributeValue, int maxEdges)
           
 void EdgeCreatorImp.initialize(Graph graph, java.lang.String nodeType, int attributeIndex, double attributeValue, int maxEdges)
           
 void EdgeCreator.initialize(Graph graph, java.lang.String nodeType, int attributeIndex, double attributeValue, int maxEdges)
          Initialize this creator.
 void BaseCategoricalEdgeCreator.initialize(Graph graph, java.lang.String nodeType, int attributeIndex, double attributeValue, int maxEdges)
           
 

Uses of Graph in netkit.graph.io
 

Methods in netkit.graph.io that return Graph
static Graph SchemaReader.readGDASchema(java.io.File nodeFile, java.io.File edgeFile)
          Overloaded entry point for SchemaReader.readGDASchema(Reader,Reader)
static Graph SchemaReader.readGDASchema(java.io.Reader nodeReader, java.io.Reader edgeReader)
          Reads the Node and Edge information from GDA formatted input, constructs the data structures and instantiates all of the instance data.
static Graph PajekGraph.readGraph(java.io.File pajekFile)
          Overloaded entry point for PajekGraph.readGraph(Reader)
static Graph NetkitGraph.readGraph(java.io.File schemafile)
           
static Graph PajekGraph.readGraph(java.io.Reader pajekReader)
          Reads the Graph information from Pajek formatted input, constructs the data structures and instantiates all of the instance data.
static Graph SchemaReader.readSchema(java.io.File file)
          Overloaded entry point for SchemaReader.readSchema(Reader,String)
static Graph SchemaReader.readSchema(java.io.Reader reader, java.lang.String parentDirectory)
          Reads the Graph information from a schema file, constructs the data structures and instantiates all of the instance data.
static Graph SchemaReader.stressTest(int numFields, int numNodes, int numEdges)
          This method conducts a stress test by creating a set of random nodes and edges and performs busy-work accessing the node and edge information.
 

Methods in netkit.graph.io with parameters of type Graph
static void NetkitGraph.printNetKitEdges(Graph graph, java.io.PrintWriter pw, java.lang.String edgeName)
           
static void NetkitGraph.printNetKitNodes(Graph graph, java.io.PrintWriter pw, java.lang.String nodeType)
           
static void NetkitGraph.printNetKitNodes(Graph graph, java.io.PrintWriter pw, java.lang.String nodeType, boolean saveAttributes, boolean appendStatistics)
           
static void EdgeReaderGDA.readEdges(java.io.Reader reader, Graph graph, EdgeType et)
          Reads Edges from the supplied Reader and creates the corresponding Edges in the Graph; Edges are validated by the supplied EdgeType which must have identical source and destination Node types, and the Nodes these Edges refer to must already exist in the Graph.
static void EdgeReaderRN.readEdges(java.io.Reader reader, Graph graph, EdgeType et1, EdgeType et2)
          Reads Edges from the supplied Reader and creates the corresponding Edges in the Graph; Edges are validated by the the supplied EdgeTypes and the Nodes these Edges refer to must already exist in the Graph.
static void NodeReader.readNodes(Graph graph, java.lang.String nodeType, java.io.Reader reader, boolean skipFirstLine)
          This static method does the work of reading input data for the class.
static void PajekGraph.saveGraph(Graph graph, java.io.PrintWriter pw)
           
static void DotGraph.saveGraph(Graph graph, java.io.PrintWriter pw)
           
static void PajekGraph.saveGraph(Graph graph, java.io.PrintWriter pw, Classification truth, Estimate pred, java.lang.String labelAttribute)
           
static void PajekGraph.saveGraph(Graph graph, java.lang.String file)
           
static void NetkitGraph.saveGraph(Graph graph, java.lang.String outputStem)
           
static void DotGraph.saveGraph(Graph graph, java.lang.String file)
           
static void NetkitGraph.saveGraph(Graph graph, java.lang.String outputStem, boolean saveAttributes, boolean appendStatistics)
           
static void PajekGraph.saveGraph(Graph graph, java.lang.String file, Classification truth, Estimate pred, java.lang.String labelAttribute)
          Save the given graph as a pajek graph, to the given file, using the classification and estimate and label.
static void NetkitGraph.saveNetKitEdges(Graph graph, java.lang.String prefix, java.lang.String edgeName)
           
static void NetkitGraph.saveNetKitNodes(Graph graph, java.lang.String prefix, java.lang.String nodeType)
           
static void NetkitGraph.saveNetKitNodes(Graph graph, java.lang.String prefix, java.lang.String nodeType, boolean saveAttributes, boolean appendStatistics)
           
static void SchemaWriter.writeSchema(Graph graph, java.io.Writer writer, java.util.Map<java.lang.String,java.lang.String> nodeTypeFiles, java.util.Map<java.lang.String,java.lang.String> edgeTypeFiles)
          Writes the Graph information in an extended ARFF format.
 

Uses of Graph in netkit.inference
 

Methods in netkit.inference with parameters of type Graph
 void InferenceMethodListener.iterate(Graph g, int[] unknown)
           
 void InferenceMethod.notifyListeners(Graph g, int[] unknown)
           
 

Uses of Graph in netkit.util
 

Fields in netkit.util declared as Graph
 Graph GraphMetrics.graph
           
 

Methods in netkit.util that return Graph
 Graph ModularityClusterer.getGraph()
           
 Graph GraphView.getGraph()
           
 

Constructors in netkit.util with parameters of type Graph
GraphMetrics(Graph g)
          Compute metrics over all nodes in the graph
GraphMetrics(Graph g, java.lang.String nodeType)
          Compute certain metrics only over nodes of the given node type
GraphView(Graph graph)
           
ModularityClusterer(Graph g)