netkit.classifiers
Class Estimate
java.lang.Object
netkit.classifiers.Estimate
- All Implemented Interfaces:
- java.lang.Iterable<Node>
public final class Estimate
- extends java.lang.Object
- implements java.lang.Iterable<Node>
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Estimate
public Estimate(Estimate e)
Estimate
public Estimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute)
Estimate
public Estimate(Classification labels)
estimate
public void estimate(Node node,
double[] estimate)
classify
public void classify(Node node,
int clsVal)
clear
public void clear()
getScore
public double getScore(Node node,
int clsVal)
getEstimate
public double[] getEstimate(Node node)
getEstimate
public double[] getEstimate(Node node,
double[] defaultValue)
sampleEstimateIdx
public int sampleEstimateIdx(Node node)
normalize
public void normalize(Node node)
getClassification
public int getClassification(Node node)
getClassificationIdx
public int getClassificationIdx(Node node,
int defaultValue)
size
public int size()
getAttribute
public AttributeCategorical getAttribute()
getGraph
public Graph getGraph()
getNodeType
public java.lang.String getNodeType()
iterator
public java.util.Iterator<Node> iterator()
- Specified by:
iterator
in interface java.lang.Iterable<Node>
asClassification
public Classification asClassification()
copyInto
public void copyInto(Estimate result)
applyCMN
public void applyCMN(DataSplit split)
- Apply class mass normalization.
- Parameters:
known
- - See Also:
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). "Semi-supervised learning using Gaussian fields and harmonic functions," The 20th International Conference on Machine Learning (ICML), 2003.
toString
public java.lang.String toString()
- Overrides:
toString
in class java.lang.Object