|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use Estimate | |
|---|---|
| netkit.classifiers | |
| netkit.classifiers.active | |
| netkit.classifiers.aggregators | |
| netkit.classifiers.io | |
| netkit.classifiers.relational | |
| netkit.graph.io | |
| netkit.inference | |
| netkit.util | |
| Uses of Estimate in netkit.classifiers |
|---|
| Methods in netkit.classifiers that return Estimate | |
|---|---|
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split)
See fully parameterized method for details. |
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split,
int picksPerIteration,
int maxPicks,
boolean learnWithTruth,
int depth)
Run active learning using the given parameters. |
Estimate |
NetworkLearning.runInference(DataSplit split)
|
Estimate |
NetworkLearner.runInference(DataSplit split)
|
Estimate |
NetworkLearner.runInference(DataSplit split,
boolean showItAcc,
boolean learnWithTruth,
int depth)
|
Estimate |
NetworkLearner.runLeaveOneOut(DataSplit split)
|
Estimate |
NetworkLearner.runLeaveOneOut(DataSplit split,
boolean learnWithTruth,
int depth)
|
| Methods in netkit.classifiers with parameters of type Estimate | |
|---|---|
void |
Estimate.copyInto(Estimate result)
|
boolean |
ClassifierImp.estimate(Node node,
Estimate result)
|
boolean |
Classifier.estimate(Node node,
Estimate result)
|
| Constructors in netkit.classifiers with parameters of type Estimate | |
|---|---|
Classification(Estimate e)
|
|
Estimate(Estimate e)
|
|
| Uses of Estimate in netkit.classifiers.active |
|---|
| Methods in netkit.classifiers.active with parameters of type Estimate | |
|---|---|
static double |
EmpiricalRiskMinimization.computeEmpiricalRisk(Estimate predictions)
Compute the empirical risk for a specific set of predictions using the standard empirical risk formulation: risk(predictions) = sum over x in testset: argmin_i [ 1-f(x,i) ],
where f(x,i) is the probability that x belongs to class i. |
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
double |
UncertaintyLabeling.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
PickLabelStrategyImp.getRank(DataSplit currentSplit,
Estimate currentPredictions,
Node node)
|
double |
PickLabelStrategy.getRank(DataSplit currentSplit,
Estimate currentPredictions,
Node node)
Get the rank of the given node if the strategy were to pick the node. |
double |
GreedyTruth.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
GraphCentralityLabeling.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
EmpiricalRiskMinimizationHarmonic.getRank(DataSplit split,
Estimate predictions,
Node node)
|
PickLabelStrategy.LabelNode[] |
UncertaintyLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
Get the list of nodes to get labels for... |
PickLabelStrategy.LabelNode[] |
GreedyTruth.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
GraphCentralityLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimizationHarmonic.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
protected PickLabelStrategy.LabelNode[] |
UncertaintyLabeling.pickNodes(Estimate predictions,
int maxPicks)
|
protected PickLabelStrategy.LabelNode[] |
RandomLabeling.pickNodes(Estimate predictions,
int maxPicks)
|
protected abstract PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.pickNodes(Estimate predictions,
int maxPicks)
Get the list of nodes to get labels for. |
protected PickLabelStrategy.LabelNode[] |
GreedyTruth.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
GraphCentralityLabeling.pickNodes(Estimate predictions,
int maxPicks)
Picks the next nodes as the ones with the highest closeness centrality (normalized by cluster size) in a cluster that has no known labels. |
protected PickLabelStrategy.LabelNode[] |
ERMHybrid.pickNodes(Estimate predictions,
int maxPicks)
Maxpicks are ignored. |
protected PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimizationHarmonic.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimization.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
ComparatorLabeler.pickNodes(Estimate predictions,
int maxPicks)
Maxpicks are ignored. |
| Uses of Estimate in netkit.classifiers.aggregators |
|---|
| Methods in netkit.classifiers.aggregators with parameters of type Estimate | |
|---|---|
double[] |
SharedNodeInfo.countNeighbors(Node n,
Estimate prior)
Count, for all relevant neighbors, how many of the neighboring attributes took on each of the possible values (weighted by the edge weight). |
double |
SharedNodeInfo.getSum(Node n,
Estimate prior)
Get the (weighted) sum of all relevant neighbors. |
double |
Ratio.getValue(Node n,
Estimate prior)
|
double |
Mode.getValue(Node n,
Estimate prior)
|
double |
Min.getValue(Node n,
Estimate prior)
|
double |
Mean.getValue(Node n,
Estimate prior)
|
double |
Max.getValue(Node n,
Estimate prior)
|
double |
Exist.getValue(Node n,
Estimate prior)
|
double |
Count.getValue(Node n,
Estimate prior)
|
double |
Aggregator.getValue(Node n,
Estimate prior)
Gets the value stored in this object for the supplied Node. |
| Uses of Estimate in netkit.classifiers.io |
|---|
| Methods in netkit.classifiers.io that return Estimate | |
|---|---|
Estimate |
ReadEstimateRainbow.readEstimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Create a new Estimate object and call the more general readEstimate method. |
Estimate |
ReadEstimate.readEstimate(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Read from a given file an estimate for nodes in the given graph. |
| Methods in netkit.classifiers.io with parameters of type Estimate | |
|---|---|
void |
PrintEstimateWriter.print(Node node,
Estimate e)
Print an estimate of the given node using the given output format and the given current estimates. |
void |
PrintEstimateWriter.print(Node node,
Estimate e,
Classification known)
Print an estimate of the given node using the given output format and the given current estimates and true labels. |
void |
PrintEstimateWriter.println(Node node,
Estimate e)
Print an estimate line of the given node using the given output format and the given current estimates. |
void |
PrintEstimateWriter.println(Node node,
Estimate e,
Classification known)
Print an estimate line of the given node using the given output format and the given current estimates and true labels. |
void |
ReadEstimateRainbow.readEstimate(Graph graph,
Estimate estimates,
java.io.File input)
Reads in a set of estimates from the given file, assuming that each line is of the form: nodeID trueclass class:score ... |
void |
ReadEstimate.readEstimate(Graph graph,
Estimate estimates,
java.io.File input)
Read from a given file estimates for nodes in the given graph. |
java.lang.String |
PrintEstimateWriter.toString(Node node,
Estimate e)
The equivalent of a print, where the output has been set to a string to be returned. |
java.lang.String |
PrintEstimateWriter.toString(Node node,
Estimate e,
Classification known)
The equivalent of a print, where the output has been set to a string to be returned. |
| Uses of Estimate in netkit.classifiers.relational |
|---|
| Fields in netkit.classifiers.relational declared as Estimate | |
|---|---|
protected Estimate |
NetworkClassifierImp.prior
This keeps track of the priors for the unknown nodes. |
| Methods in netkit.classifiers.relational with parameters of type Estimate | |
|---|---|
int |
NetworkClassifierImp.classify(Node node,
Estimate prior,
boolean updatePrior)
Classify a given node into one of the given classes. |
int |
NetworkClassifier.classify(Node node,
Estimate prior,
boolean updatePrior)
Classify a given node into one of the given classes. |
double[] |
NetworkClassifierImp.estimate(Node node,
Estimate prior,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
double[] |
NetworkClassifier.estimate(Node node,
Estimate prior,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
boolean |
NetworkClassifierImp.estimate(Node node,
Estimate prior,
double[] result,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
boolean |
NetworkClassifier.estimate(Node node,
Estimate prior,
double[] result,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
boolean |
NetworkClassifierImp.estimate(Node node,
Estimate prior,
Estimate result,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
boolean |
NetworkClassifier.estimate(Node node,
Estimate prior,
Estimate result,
boolean updatePrior)
Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node. |
void |
WeightedVoteRelationalNeighbor.initializeRun(Estimate currPrior,
Node[] unknowns)
This initializes wvRN for the next collective inference iteration by setting up the laplace correction, if needed, for the current iteration. |
void |
NetworkClassifierImp.initializeRun(Estimate currPrior,
Node[] unknowns)
This is called prior to predicting labels for the unknown labels in the graph, in case the classifier needs to initialize itself. |
void |
NetworkClassifier.initializeRun(Estimate currPrior,
Node[] unknowns)
This is called prior to predicting labels for the unknown labels in the graph, in case the classifier needs to initialize itself. |
void |
Harmonic.initializeRun(Estimate currPrior,
Node[] unknowns)
This initializes Harmonic function for the next collective inference iteration by doing absolutely nothing. |
| Uses of Estimate in netkit.graph.io |
|---|
| Methods in netkit.graph.io with parameters of type Estimate | |
|---|---|
static void |
PajekGraph.saveGraph(Graph graph,
java.io.PrintWriter pw,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
|
static void |
PajekGraph.saveGraph(Graph graph,
java.lang.String file,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
Save the given graph as a pajek graph, to the given file, using the classification and estimate and label. |
| Uses of Estimate in netkit.inference |
|---|
| Fields in netkit.inference declared as Estimate | |
|---|---|
protected Estimate |
InferenceMethod.currPrior
|
protected Estimate |
InferenceMethod.initialPrior
|
| Methods in netkit.inference that return Estimate | |
|---|---|
Estimate |
InferenceMethod.estimate(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns)
|
Estimate |
InferenceMethod.getCurrentEstimate()
|
Estimate |
GibbsSampling.getCurrentEstimate()
|
Estimate |
InferenceMethod.getInitialPrior()
|
| Methods in netkit.inference with parameters of type Estimate | |
|---|---|
void |
InferenceMethodListener.estimate(Estimate e,
int[] unknown)
|
void |
InferenceMethod.estimate(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns,
Estimate result)
|
void |
InferenceMethod.notifyListeners(Estimate e,
int[] unknown)
|
void |
InferenceMethod.setInitialPrior(Estimate prior)
|
| Uses of Estimate in netkit.util |
|---|
| Constructors in netkit.util with parameters of type Estimate | |
|---|---|
ConfusionMatrix(Estimate predictions,
Classification truth)
|
|
ROC(Estimate predictions,
Classification truth,
int posClass)
|
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||