Uses of Class
netkit.classifiers.Estimate

Packages that use Estimate
netkit.classifiers   
netkit.classifiers.active   
netkit.classifiers.aggregators   
netkit.classifiers.io   
netkit.classifiers.relational   
netkit.graph.io   
netkit.inference   
netkit.util   
 

Uses of Estimate in netkit.classifiers
 

Methods in netkit.classifiers that return Estimate
 Estimate NetworkLearner.runActiveLearner(PickLabelStrategy ps, DataSplit split)
          See fully parameterized method for details.
 Estimate NetworkLearner.runActiveLearner(PickLabelStrategy ps, DataSplit split, int picksPerIteration, int maxPicks, boolean learnWithTruth, int depth)
          Run active learning using the given parameters.
 Estimate NetworkLearning.runInference(DataSplit split)
           
 Estimate NetworkLearner.runInference(DataSplit split)
           
 Estimate NetworkLearner.runInference(DataSplit split, boolean showItAcc, boolean learnWithTruth, int depth)
           
 Estimate NetworkLearner.runLeaveOneOut(DataSplit split)
           
 Estimate NetworkLearner.runLeaveOneOut(DataSplit split, boolean learnWithTruth, int depth)
           
 

Methods in netkit.classifiers with parameters of type Estimate
 void Estimate.copyInto(Estimate result)
           
 boolean ClassifierImp.estimate(Node node, Estimate result)
           
 boolean Classifier.estimate(Node node, Estimate result)
           
 

Constructors in netkit.classifiers with parameters of type Estimate
Classification(Estimate e)
           
Estimate(Estimate e)
           
 

Uses of Estimate in netkit.classifiers.active
 

Methods in netkit.classifiers.active with parameters of type Estimate
static double EmpiricalRiskMinimization.computeEmpiricalRisk(Estimate predictions)
          Compute the empirical risk for a specific set of predictions using the standard empirical risk formulation: risk(predictions) = sum over x in testset: argmin_i [ 1-f(x,i) ], where f(x,i) is the probability that x belongs to class i.
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 PickLabelStrategy.LabelNode[] PickLabelStrategy.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 double UncertaintyLabeling.getRank(DataSplit split, Estimate predictions, Node node)
           
 double PickLabelStrategyImp.getRank(DataSplit currentSplit, Estimate currentPredictions, Node node)
           
 double PickLabelStrategy.getRank(DataSplit currentSplit, Estimate currentPredictions, Node node)
          Get the rank of the given node if the strategy were to pick the node.
 double GreedyTruth.getRank(DataSplit split, Estimate predictions, Node node)
           
 double GraphCentralityLabeling.getRank(DataSplit split, Estimate predictions, Node node)
           
 double EmpiricalRiskMinimizationHarmonic.getRank(DataSplit split, Estimate predictions, Node node)
           
 PickLabelStrategy.LabelNode[] UncertaintyLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategy.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
          Get the list of nodes to get labels for...
 PickLabelStrategy.LabelNode[] GreedyTruth.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] GraphCentralityLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] EmpiricalRiskMinimizationHarmonic.peek(DataSplit split, Estimate predictions, int maxPicks)
           
protected  PickLabelStrategy.LabelNode[] UncertaintyLabeling.pickNodes(Estimate predictions, int maxPicks)
           
protected  PickLabelStrategy.LabelNode[] RandomLabeling.pickNodes(Estimate predictions, int maxPicks)
           
protected abstract  PickLabelStrategy.LabelNode[] PickLabelStrategyImp.pickNodes(Estimate predictions, int maxPicks)
          Get the list of nodes to get labels for.
protected  PickLabelStrategy.LabelNode[] GreedyTruth.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] GraphCentralityLabeling.pickNodes(Estimate predictions, int maxPicks)
          Picks the next nodes as the ones with the highest closeness centrality (normalized by cluster size) in a cluster that has no known labels.
protected  PickLabelStrategy.LabelNode[] ERMHybrid.pickNodes(Estimate predictions, int maxPicks)
          Maxpicks are ignored.
protected  PickLabelStrategy.LabelNode[] EmpiricalRiskMinimizationHarmonic.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] EmpiricalRiskMinimization.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] ComparatorLabeler.pickNodes(Estimate predictions, int maxPicks)
          Maxpicks are ignored.
 

Uses of Estimate in netkit.classifiers.aggregators
 

Methods in netkit.classifiers.aggregators with parameters of type Estimate
 double[] SharedNodeInfo.countNeighbors(Node n, Estimate prior)
          Count, for all relevant neighbors, how many of the neighboring attributes took on each of the possible values (weighted by the edge weight).
 double SharedNodeInfo.getSum(Node n, Estimate prior)
          Get the (weighted) sum of all relevant neighbors.
 double Ratio.getValue(Node n, Estimate prior)
           
 double Mode.getValue(Node n, Estimate prior)
           
 double Min.getValue(Node n, Estimate prior)
           
 double Mean.getValue(Node n, Estimate prior)
           
 double Max.getValue(Node n, Estimate prior)
           
 double Exist.getValue(Node n, Estimate prior)
           
 double Count.getValue(Node n, Estimate prior)
           
 double Aggregator.getValue(Node n, Estimate prior)
          Gets the value stored in this object for the supplied Node.
 

Uses of Estimate in netkit.classifiers.io
 

Methods in netkit.classifiers.io that return Estimate
 Estimate ReadEstimateRainbow.readEstimate(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Create a new Estimate object and call the more general readEstimate method.
 Estimate ReadEstimate.readEstimate(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Read from a given file an estimate for nodes in the given graph.
 

Methods in netkit.classifiers.io with parameters of type Estimate
 void PrintEstimateWriter.print(Node node, Estimate e)
          Print an estimate of the given node using the given output format and the given current estimates.
 void PrintEstimateWriter.print(Node node, Estimate e, Classification known)
          Print an estimate of the given node using the given output format and the given current estimates and true labels.
 void PrintEstimateWriter.println(Node node, Estimate e)
          Print an estimate line of the given node using the given output format and the given current estimates.
 void PrintEstimateWriter.println(Node node, Estimate e, Classification known)
          Print an estimate line of the given node using the given output format and the given current estimates and true labels.
 void ReadEstimateRainbow.readEstimate(Graph graph, Estimate estimates, java.io.File input)
          Reads in a set of estimates from the given file, assuming that each line is of the form: nodeID trueclass class:score ...
 void ReadEstimate.readEstimate(Graph graph, Estimate estimates, java.io.File input)
          Read from a given file estimates for nodes in the given graph.
 java.lang.String PrintEstimateWriter.toString(Node node, Estimate e)
          The equivalent of a print, where the output has been set to a string to be returned.
 java.lang.String PrintEstimateWriter.toString(Node node, Estimate e, Classification known)
          The equivalent of a print, where the output has been set to a string to be returned.
 

Uses of Estimate in netkit.classifiers.relational
 

Fields in netkit.classifiers.relational declared as Estimate
protected  Estimate NetworkClassifierImp.prior
          This keeps track of the priors for the unknown nodes.
 

Methods in netkit.classifiers.relational with parameters of type Estimate
 int NetworkClassifierImp.classify(Node node, Estimate prior, boolean updatePrior)
          Classify a given node into one of the given classes.
 int NetworkClassifier.classify(Node node, Estimate prior, boolean updatePrior)
          Classify a given node into one of the given classes.
 double[] NetworkClassifierImp.estimate(Node node, Estimate prior, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 double[] NetworkClassifier.estimate(Node node, Estimate prior, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 boolean NetworkClassifierImp.estimate(Node node, Estimate prior, double[] result, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 boolean NetworkClassifier.estimate(Node node, Estimate prior, double[] result, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 boolean NetworkClassifierImp.estimate(Node node, Estimate prior, Estimate result, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 boolean NetworkClassifier.estimate(Node node, Estimate prior, Estimate result, boolean updatePrior)
          Estimate the probabilities that a given node into belongs to any given class It may use the class estimations of other nodes and may update the prior of the given node.
 void WeightedVoteRelationalNeighbor.initializeRun(Estimate currPrior, Node[] unknowns)
          This initializes wvRN for the next collective inference iteration by setting up the laplace correction, if needed, for the current iteration.
 void NetworkClassifierImp.initializeRun(Estimate currPrior, Node[] unknowns)
          This is called prior to predicting labels for the unknown labels in the graph, in case the classifier needs to initialize itself.
 void NetworkClassifier.initializeRun(Estimate currPrior, Node[] unknowns)
          This is called prior to predicting labels for the unknown labels in the graph, in case the classifier needs to initialize itself.
 void Harmonic.initializeRun(Estimate currPrior, Node[] unknowns)
          This initializes Harmonic function for the next collective inference iteration by doing absolutely nothing.
 

Uses of Estimate in netkit.graph.io
 

Methods in netkit.graph.io with parameters of type Estimate
static void PajekGraph.saveGraph(Graph graph, java.io.PrintWriter pw, Classification truth, Estimate pred, java.lang.String labelAttribute)
           
static void PajekGraph.saveGraph(Graph graph, java.lang.String file, Classification truth, Estimate pred, java.lang.String labelAttribute)
          Save the given graph as a pajek graph, to the given file, using the classification and estimate and label.
 

Uses of Estimate in netkit.inference
 

Fields in netkit.inference declared as Estimate
protected  Estimate InferenceMethod.currPrior
           
protected  Estimate InferenceMethod.initialPrior
           
 

Methods in netkit.inference that return Estimate
 Estimate InferenceMethod.estimate(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns)
           
 Estimate InferenceMethod.getCurrentEstimate()
           
 Estimate GibbsSampling.getCurrentEstimate()
           
 Estimate InferenceMethod.getInitialPrior()
           
 

Methods in netkit.inference with parameters of type Estimate
 void InferenceMethodListener.estimate(Estimate e, int[] unknown)
           
 void InferenceMethod.estimate(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns, Estimate result)
           
 void InferenceMethod.notifyListeners(Estimate e, int[] unknown)
           
 void InferenceMethod.setInitialPrior(Estimate prior)
           
 

Uses of Estimate in netkit.util
 

Constructors in netkit.util with parameters of type Estimate
ConfusionMatrix(Estimate predictions, Classification truth)
           
ROC(Estimate predictions, Classification truth, int posClass)