Uses of Interface
netkit.classifiers.relational.NetworkClassifier

Packages that use NetworkClassifier
netkit.classifiers   
netkit.classifiers.relational   
netkit.inference   
 

Uses of NetworkClassifier in netkit.classifiers
 

Fields in netkit.classifiers with type parameters of type NetworkClassifier
static Factory<NetworkClassifier> NetworkLearning.rclassifiers
           
 

Methods in netkit.classifiers that return NetworkClassifier
 NetworkClassifier NetworkLearner.getNetworkClassifier()
           
 

Constructors in netkit.classifiers with parameters of type NetworkClassifier
NetworkLearner(Classifier lc, NetworkClassifier nc, InferenceMethod ic, boolean applyCMN)
           
 

Uses of NetworkClassifier in netkit.classifiers.relational
 

Classes in netkit.classifiers.relational that implement NetworkClassifier
 class ClassDistribRelNeighbor
          The Class Distributional Relational Neighbor (ClassDistributRelNeighbor) classifier works by creating a 'prototypical' class vector for each class of node and then estimating a label for a new node by calculating how near that new node is to each of these 'class reference vectors'.
 class Harmonic
          The Harmonic Function classifier from Zhu (2003) Reference: Zhu, X., Ghahramani, Z., & Lafferty, J.
 class MetaMultiplicative
          a classifier that multiplies the predictions of one or more classifiers and returns a normalized distribution as its own estimate.
 class NetworkClassifierImp
          Core implementation of the NetworkClassifier (and Classifier) interface.
 class NetworkMetaClassifier
          Abstract class for combining multiple relational and non-relational classifiers.
 class NetworkOnlyBayes
          Network-only Bayes Classifier induces a naive Bayes model based on labels of neighbors of a node and uses a Markov random field formulation when one or more neighbors have estimated labels.
 class NetworkWeka
          Weka wrapper that uses a specified weka classifier to do its predictions.
 class ProbRelationalNeighbor
          This is a probablistic version of wbRN and it estimates nodes by using a Bayesian combination of the neighbors edges.
 class WeightedVoteRelationalNeighbor
          weighted-vote Relational Neighbor Classifier (wvRN).
 

Fields in netkit.classifiers.relational with type parameters of type NetworkClassifier
protected  java.util.ArrayList<NetworkClassifier> NetworkMetaClassifier.rclassifiers
          The list of relational classifiers to use
 

Uses of NetworkClassifier in netkit.inference
 

Methods in netkit.inference with parameters of type NetworkClassifier
 Classification InferenceMethod.classify(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns)
           
 void InferenceMethod.classify(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns, Classification result)
           
 Estimate InferenceMethod.estimate(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns)
           
 void InferenceMethod.estimate(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns, Estimate result)
           
 double InferenceMethod.getCurrentTrainingLOOAccuracy(NetworkClassifier nc)
          What is the accuracy on the training data, if we do a leave-one-out estimation, keeping current predictions for the test set.
 boolean RelaxationLabeling.iterate(NetworkClassifier networkClassifier)
           
 boolean NullInference.iterate(NetworkClassifier networkClassifier)
           
 boolean IterativeClassification.iterate(NetworkClassifier networkClassifier)
           
protected abstract  boolean InferenceMethod.iterate(NetworkClassifier networkClassifier)
           
 boolean GibbsSampling.iterate(NetworkClassifier networkClassifier)