|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use NetworkClassifier | |
|---|---|
| netkit.classifiers | |
| netkit.classifiers.relational | |
| netkit.inference | |
| Uses of NetworkClassifier in netkit.classifiers |
|---|
| Fields in netkit.classifiers with type parameters of type NetworkClassifier | |
|---|---|
static Factory<NetworkClassifier> |
NetworkLearning.rclassifiers
|
| Methods in netkit.classifiers that return NetworkClassifier | |
|---|---|
NetworkClassifier |
NetworkLearner.getNetworkClassifier()
|
| Constructors in netkit.classifiers with parameters of type NetworkClassifier | |
|---|---|
NetworkLearner(Classifier lc,
NetworkClassifier nc,
InferenceMethod ic,
boolean applyCMN)
|
|
| Uses of NetworkClassifier in netkit.classifiers.relational |
|---|
| Classes in netkit.classifiers.relational that implement NetworkClassifier | |
|---|---|
class |
ClassDistribRelNeighbor
The Class Distributional Relational Neighbor (ClassDistributRelNeighbor) classifier works by creating a 'prototypical' class vector for each class of node and then estimating a label for a new node by calculating how near that new node is to each of these 'class reference vectors'. |
class |
Harmonic
The Harmonic Function classifier from Zhu (2003) Reference: Zhu, X., Ghahramani, Z., & Lafferty, J. |
class |
MetaMultiplicative
a classifier that multiplies the predictions of one or more classifiers and returns a normalized distribution as its own estimate. |
class |
NetworkClassifierImp
Core implementation of the NetworkClassifier (and Classifier) interface. |
class |
NetworkMetaClassifier
Abstract class for combining multiple relational and non-relational classifiers. |
class |
NetworkOnlyBayes
Network-only Bayes Classifier induces a naive Bayes model based on labels of neighbors of a node and uses a Markov random field formulation when one or more neighbors have estimated labels. |
class |
NetworkWeka
Weka wrapper that uses a specified weka classifier to do its predictions. |
class |
ProbRelationalNeighbor
This is a probablistic version of wbRN and it estimates nodes by using a Bayesian combination of the neighbors edges. |
class |
WeightedVoteRelationalNeighbor
weighted-vote Relational Neighbor Classifier (wvRN). |
| Fields in netkit.classifiers.relational with type parameters of type NetworkClassifier | |
|---|---|
protected java.util.ArrayList<NetworkClassifier> |
NetworkMetaClassifier.rclassifiers
The list of relational classifiers to use |
| Uses of NetworkClassifier in netkit.inference |
|---|
| Methods in netkit.inference with parameters of type NetworkClassifier | |
|---|---|
Classification |
InferenceMethod.classify(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns)
|
void |
InferenceMethod.classify(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns,
Classification result)
|
Estimate |
InferenceMethod.estimate(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns)
|
void |
InferenceMethod.estimate(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns,
Estimate result)
|
double |
InferenceMethod.getCurrentTrainingLOOAccuracy(NetworkClassifier nc)
What is the accuracy on the training data, if we do a leave-one-out estimation, keeping current predictions for the test set. |
boolean |
RelaxationLabeling.iterate(NetworkClassifier networkClassifier)
|
boolean |
NullInference.iterate(NetworkClassifier networkClassifier)
|
boolean |
IterativeClassification.iterate(NetworkClassifier networkClassifier)
|
protected abstract boolean |
InferenceMethod.iterate(NetworkClassifier networkClassifier)
|
boolean |
GibbsSampling.iterate(NetworkClassifier networkClassifier)
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||