Uses of Class
netkit.classifiers.DataSplit

Packages that use DataSplit
netkit.classifiers   
netkit.classifiers.active   
netkit.classifiers.nonrelational   
netkit.classifiers.relational   
netkit.graph.edgecreator   
 

Uses of DataSplit in netkit.classifiers
 

Methods in netkit.classifiers that return DataSplit
 DataSplit[] DataView.crossValidate(int numSplits)
           
 DataSplit NetworkLearner.getSplit()
           
 DataSplit DataView.getSplit(Classification known)
           
 DataSplit DataView.getSplit(Classification known, Classification test)
           
 DataSplit DataView.getSplit(double trainRatio)
           
 DataSplit DataView.getSplit(double trainRatio, double testRatio)
           
 DataSplit DataView.getSplit(int trainSize)
           
 DataSplit DataView.getSplit(int trainSize, int testSize)
           
 DataSplit DataView.getSplit(NodeFilter trainFilter)
           
 DataSplit[] NetworkLearning.getSplits()
           
 DataSplit[] DataView.getSplits(int numSplits, double trainRatio)
           
 DataSplit[] DataView.getSplits(int numSplits, double trainRatio, double testRatio)
           
 DataSplit[] DataView.getSplits(int numSplits, int trainSize)
           
 DataSplit[] DataView.getSplits(int numSplits, int trainSize, int testSize)
           
 

Methods in netkit.classifiers with parameters of type DataSplit
 void Estimate.applyCMN(DataSplit split)
          Apply class mass normalization.
 void NetworkLearning.augmentGraph(DataSplit split, GraphView gv, EdgeCreator[] ecs)
           
 void ClassifierImp.induceModel(Graph graph, DataSplit split)
           
 void Classifier.induceModel(Graph graph, DataSplit split)
           
 Estimate NetworkLearner.runActiveLearner(PickLabelStrategy ps, DataSplit split)
          See fully parameterized method for details.
 Estimate NetworkLearner.runActiveLearner(PickLabelStrategy ps, DataSplit split, int picksPerIteration, int maxPicks, boolean learnWithTruth, int depth)
          Run active learning using the given parameters.
 Estimate NetworkLearning.runInference(DataSplit split)
           
 Estimate NetworkLearner.runInference(DataSplit split)
           
 Estimate NetworkLearner.runInference(DataSplit split, boolean showItAcc, boolean learnWithTruth, int depth)
           
 Estimate NetworkLearner.runLeaveOneOut(DataSplit split)
           
 Estimate NetworkLearner.runLeaveOneOut(DataSplit split, boolean learnWithTruth, int depth)
           
 void NetworkLearning.setSplits(DataSplit[] s)
           
 

Uses of DataSplit in netkit.classifiers.active
 

Methods in netkit.classifiers.active that return DataSplit
 DataSplit PickLabelStrategyImp.getSplit()
           
 

Methods in netkit.classifiers.active with parameters of type DataSplit
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 PickLabelStrategy.LabelNode[] PickLabelStrategy.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 double UncertaintyLabeling.getRank(DataSplit split, Estimate predictions, Node node)
           
 double PickLabelStrategyImp.getRank(DataSplit currentSplit, Estimate currentPredictions, Node node)
           
 double PickLabelStrategy.getRank(DataSplit currentSplit, Estimate currentPredictions, Node node)
          Get the rank of the given node if the strategy were to pick the node.
 double GreedyTruth.getRank(DataSplit split, Estimate predictions, Node node)
           
 double GraphCentralityLabeling.getRank(DataSplit split, Estimate predictions, Node node)
           
 double EmpiricalRiskMinimizationHarmonic.getRank(DataSplit split, Estimate predictions, Node node)
           
 void PickLabelStrategyImp.initialize(NetworkLearner nl, DataSplit split)
           
 void PickLabelStrategy.initialize(NetworkLearner nl, DataSplit split)
          Initialize the label strategy by providing a reference to the NetworkLeaner object that calls the strategy, thereby giving it access to all information it is likely to need.
 void GreedyTruth.initialize(NetworkLearner nl, DataSplit split)
           
 void GraphCentralityLabeling.initialize(NetworkLearner nl, DataSplit split)
           
 void ERMHybrid.initialize(NetworkLearner nl, DataSplit split)
           
 void EmpiricalRiskMinimizationHarmonic.initialize(NetworkLearner nl, DataSplit split)
           
 void ComparatorLabeler.initialize(NetworkLearner nl, DataSplit split)
           
 PickLabelStrategy.LabelNode[] UncertaintyLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategy.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
          Get the list of nodes to get labels for...
 PickLabelStrategy.LabelNode[] GreedyTruth.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] GraphCentralityLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] EmpiricalRiskMinimizationHarmonic.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 

Uses of DataSplit in netkit.classifiers.nonrelational
 

Methods in netkit.classifiers.nonrelational with parameters of type DataSplit
 void UniformPrior.induceModel(Graph graph, DataSplit split)
          Makes a uniform prediction array---all classes are equally likely
 void MetaMultiplicative.induceModel(Graph graph, DataSplit split)
          Induce the model.
 void LocalWeka.induceModel(Graph graph, DataSplit split)
          Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified.
 void LocalMetaClassifier.induceModel(Graph graph, DataSplit split)
          This induces each of the local classifiers individually.
 void ExternalPrior.induceModel(Graph graph, DataSplit split)
          Inducing this model simply means to read the estimates from the input file.
 

Uses of DataSplit in netkit.classifiers.relational
 

Methods in netkit.classifiers.relational with parameters of type DataSplit
 void WeightedVoteRelationalNeighbor.induceModel(Graph graph, DataSplit split)
          wvRN has no model, so this only initializes what needs to be done for laplace correction (in addition to whatever the superclass does).
 void NetworkWeka.induceModel(Graph graph, DataSplit split)
          Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified.
 void NetworkOnlyBayes.induceModel(Graph graph, DataSplit split)
          Induce the model by computing the counts for Prob(classIdx | neighborClassIdx)
 void NetworkMetaClassifier.induceModel(Graph graph, DataSplit split)
          This separately induces all the non-relational and relational classifiers in addition to any setup the super-class needs to do.
 void NetworkClassifierImp.induceModel(Graph graph, DataSplit split)
          This method induces a new prediction model.
 void MetaMultiplicative.induceModel(Graph graph, DataSplit split)
          Induce the model.
 void Harmonic.induceModel(Graph graph, DataSplit split)
          Harmonic has no model per se as its learning consists of computing the harmonic function which results in the predictions.
 void ClassDistribRelNeighbor.induceModel(Graph graph, DataSplit split)
          Induce the cdRN model by finding the 'prototypical' neighborhood for each class of nodes.
 

Uses of DataSplit in netkit.graph.edgecreator
 

Fields in netkit.graph.edgecreator declared as DataSplit
protected  DataSplit EdgeCreatorImp.split
           
 

Methods in netkit.graph.edgecreator with parameters of type DataSplit
 void MahalanobisDistanceEdgeCreator.buildModel(DataSplit split)
           
 void GaussianNumericEdgeCreator.buildModel(DataSplit split)
           
 void EuclideanDistanceEdgeCreator.buildModel(DataSplit split)
           
 void EdgeCreatorImp.buildModel(DataSplit split)
           
 void EdgeCreator.buildModel(DataSplit split)
          Build a model of edge creation based on the data split.
 void CosineDistanceEdgeCreator.buildModel(DataSplit split)
           
 void BayesCategoricalEdgeCreator.buildModel(DataSplit split)
           
 Classification EdgeCreatorImp.getLabeledNodes(DataSplit split, boolean useTrueAssort)
          Get a classification object which contains all the nodes to be used to calculate assortativity