|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DataSplit | |
---|---|
netkit.classifiers | |
netkit.classifiers.active | |
netkit.classifiers.nonrelational | |
netkit.classifiers.relational | |
netkit.graph.edgecreator |
Uses of DataSplit in netkit.classifiers |
---|
Methods in netkit.classifiers that return DataSplit | |
---|---|
DataSplit[] |
DataView.crossValidate(int numSplits)
|
DataSplit |
NetworkLearner.getSplit()
|
DataSplit |
DataView.getSplit(Classification known)
|
DataSplit |
DataView.getSplit(Classification known,
Classification test)
|
DataSplit |
DataView.getSplit(double trainRatio)
|
DataSplit |
DataView.getSplit(double trainRatio,
double testRatio)
|
DataSplit |
DataView.getSplit(int trainSize)
|
DataSplit |
DataView.getSplit(int trainSize,
int testSize)
|
DataSplit |
DataView.getSplit(NodeFilter trainFilter)
|
DataSplit[] |
NetworkLearning.getSplits()
|
DataSplit[] |
DataView.getSplits(int numSplits,
double trainRatio)
|
DataSplit[] |
DataView.getSplits(int numSplits,
double trainRatio,
double testRatio)
|
DataSplit[] |
DataView.getSplits(int numSplits,
int trainSize)
|
DataSplit[] |
DataView.getSplits(int numSplits,
int trainSize,
int testSize)
|
Methods in netkit.classifiers with parameters of type DataSplit | |
---|---|
void |
Estimate.applyCMN(DataSplit split)
Apply class mass normalization. |
void |
NetworkLearning.augmentGraph(DataSplit split,
GraphView gv,
EdgeCreator[] ecs)
|
void |
ClassifierImp.induceModel(Graph graph,
DataSplit split)
|
void |
Classifier.induceModel(Graph graph,
DataSplit split)
|
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split)
See fully parameterized method for details. |
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split,
int picksPerIteration,
int maxPicks,
boolean learnWithTruth,
int depth)
Run active learning using the given parameters. |
Estimate |
NetworkLearning.runInference(DataSplit split)
|
Estimate |
NetworkLearner.runInference(DataSplit split)
|
Estimate |
NetworkLearner.runInference(DataSplit split,
boolean showItAcc,
boolean learnWithTruth,
int depth)
|
Estimate |
NetworkLearner.runLeaveOneOut(DataSplit split)
|
Estimate |
NetworkLearner.runLeaveOneOut(DataSplit split,
boolean learnWithTruth,
int depth)
|
void |
NetworkLearning.setSplits(DataSplit[] s)
|
Uses of DataSplit in netkit.classifiers.active |
---|
Methods in netkit.classifiers.active that return DataSplit | |
---|---|
DataSplit |
PickLabelStrategyImp.getSplit()
|
Methods in netkit.classifiers.active with parameters of type DataSplit | |
---|---|
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
double |
UncertaintyLabeling.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
PickLabelStrategyImp.getRank(DataSplit currentSplit,
Estimate currentPredictions,
Node node)
|
double |
PickLabelStrategy.getRank(DataSplit currentSplit,
Estimate currentPredictions,
Node node)
Get the rank of the given node if the strategy were to pick the node. |
double |
GreedyTruth.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
GraphCentralityLabeling.getRank(DataSplit split,
Estimate predictions,
Node node)
|
double |
EmpiricalRiskMinimizationHarmonic.getRank(DataSplit split,
Estimate predictions,
Node node)
|
void |
PickLabelStrategyImp.initialize(NetworkLearner nl,
DataSplit split)
|
void |
PickLabelStrategy.initialize(NetworkLearner nl,
DataSplit split)
Initialize the label strategy by providing a reference to the NetworkLeaner object that calls the strategy, thereby giving it access to all information it is likely to need. |
void |
GreedyTruth.initialize(NetworkLearner nl,
DataSplit split)
|
void |
GraphCentralityLabeling.initialize(NetworkLearner nl,
DataSplit split)
|
void |
ERMHybrid.initialize(NetworkLearner nl,
DataSplit split)
|
void |
EmpiricalRiskMinimizationHarmonic.initialize(NetworkLearner nl,
DataSplit split)
|
void |
ComparatorLabeler.initialize(NetworkLearner nl,
DataSplit split)
|
PickLabelStrategy.LabelNode[] |
UncertaintyLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
Get the list of nodes to get labels for... |
PickLabelStrategy.LabelNode[] |
GreedyTruth.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
GraphCentralityLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimizationHarmonic.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
Uses of DataSplit in netkit.classifiers.nonrelational |
---|
Methods in netkit.classifiers.nonrelational with parameters of type DataSplit | |
---|---|
void |
UniformPrior.induceModel(Graph graph,
DataSplit split)
Makes a uniform prediction array---all classes are equally likely |
void |
MetaMultiplicative.induceModel(Graph graph,
DataSplit split)
Induce the model. |
void |
LocalWeka.induceModel(Graph graph,
DataSplit split)
Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified. |
void |
LocalMetaClassifier.induceModel(Graph graph,
DataSplit split)
This induces each of the local classifiers individually. |
void |
ExternalPrior.induceModel(Graph graph,
DataSplit split)
Inducing this model simply means to read the estimates from the input file. |
Uses of DataSplit in netkit.classifiers.relational |
---|
Methods in netkit.classifiers.relational with parameters of type DataSplit | |
---|---|
void |
WeightedVoteRelationalNeighbor.induceModel(Graph graph,
DataSplit split)
wvRN has no model, so this only initializes what needs to be done for laplace correction (in addition to whatever the superclass does). |
void |
NetworkWeka.induceModel(Graph graph,
DataSplit split)
Induce the weka classifier by creating a training Instances object according to the schema of the nodes to be classified. |
void |
NetworkOnlyBayes.induceModel(Graph graph,
DataSplit split)
Induce the model by computing the counts for Prob(classIdx | neighborClassIdx) |
void |
NetworkMetaClassifier.induceModel(Graph graph,
DataSplit split)
This separately induces all the non-relational and relational classifiers in addition to any setup the super-class needs to do. |
void |
NetworkClassifierImp.induceModel(Graph graph,
DataSplit split)
This method induces a new prediction model. |
void |
MetaMultiplicative.induceModel(Graph graph,
DataSplit split)
Induce the model. |
void |
Harmonic.induceModel(Graph graph,
DataSplit split)
Harmonic has no model per se as its learning consists of computing the harmonic function which results in the predictions. |
void |
ClassDistribRelNeighbor.induceModel(Graph graph,
DataSplit split)
Induce the cdRN model by finding the 'prototypical' neighborhood for each class of nodes. |
Uses of DataSplit in netkit.graph.edgecreator |
---|
Fields in netkit.graph.edgecreator declared as DataSplit | |
---|---|
protected DataSplit |
EdgeCreatorImp.split
|
Methods in netkit.graph.edgecreator with parameters of type DataSplit | |
---|---|
void |
MahalanobisDistanceEdgeCreator.buildModel(DataSplit split)
|
void |
GaussianNumericEdgeCreator.buildModel(DataSplit split)
|
void |
EuclideanDistanceEdgeCreator.buildModel(DataSplit split)
|
void |
EdgeCreatorImp.buildModel(DataSplit split)
|
void |
EdgeCreator.buildModel(DataSplit split)
Build a model of edge creation based on the data split. |
void |
CosineDistanceEdgeCreator.buildModel(DataSplit split)
|
void |
BayesCategoricalEdgeCreator.buildModel(DataSplit split)
|
Classification |
EdgeCreatorImp.getLabeledNodes(DataSplit split,
boolean useTrueAssort)
Get a classification object which contains all the nodes to be used to calculate assortativity |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |