Uses of Class
netkit.classifiers.Classification

Packages that use Classification
netkit   
netkit.classifiers   
netkit.classifiers.active   
netkit.classifiers.active.graphfunctions   
netkit.classifiers.io   
netkit.classifiers.relational   
netkit.graph.edgecreator   
netkit.graph.io   
netkit.inference   
netkit.util   
 

Uses of Classification in netkit
 

Methods in netkit that return Classification
 Classification GraphStat.getPajekColor()
           
 

Uses of Classification in netkit.classifiers
 

Methods in netkit.classifiers that return Classification
 Classification Classification.asBinaryClassification(java.lang.String label)
           
 Classification Estimate.asClassification()
           
 Classification Classification.clone()
           
 Classification NetworkLearning.getKnown()
           
 Classification NetworkLearning.getTest()
           
 Classification NetworkLearning.getTruth()
           
 Classification DataView.getTruth()
           
 

Methods in netkit.classifiers with parameters of type Classification
 boolean ClassifierImp.classify(Node node, Classification result)
           
 boolean Classifier.classify(Node node, Classification result)
           
 double IncrementalAssessment.getIncrementalAccuracy(Node n, Classification truth)
          What would be the new accuracy if this node is labeled (after the initial model has been induced)?
 DataSplit DataView.getSplit(Classification known)
           
 DataSplit DataView.getSplit(Classification known, Classification test)
           
 void DataView.setClassification(Classification known)
           
 void NetworkLearning.setKnown(Classification k)
           
 void NetworkLearning.setTest(Classification t)
           
 void NetworkLearning.setTruth(Classification t)
           
 void DataView.setTruth(Classification truth)
           
 

Constructors in netkit.classifiers with parameters of type Classification
Estimate(Classification labels)
           
 

Uses of Classification in netkit.classifiers.active
 

Methods in netkit.classifiers.active that return Classification
 Classification GraphCentralityLabeling.getLabels()
           
 

Uses of Classification in netkit.classifiers.active.graphfunctions
 

Fields in netkit.classifiers.active.graphfunctions declared as Classification
protected  Classification ScoringFunction.labels
           
 

Uses of Classification in netkit.classifiers.io
 

Methods in netkit.classifiers.io that return Classification
 Classification ReadClassificationGeneric.readClassification(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Creates a new Classification object based on the graph, nodeType and attribute and then calls the generic readClassification method.
 Classification ReadClassification.readClassification(Graph graph, java.lang.String nodeType, AttributeCategorical attribute, java.io.File input)
          Read from a given file a estimate of classifications for nodes in the given graph.
 

Methods in netkit.classifiers.io with parameters of type Classification
 void PrintEstimateWriter.print(Node node, Estimate e, Classification known)
          Print an estimate of the given node using the given output format and the given current estimates and true labels.
 void PrintEstimateWriter.println(Node node, Estimate e, Classification known)
          Print an estimate line of the given node using the given output format and the given current estimates and true labels.
 void ReadClassificationGeneric.readClassification(Graph graph, Classification labels, java.io.File input)
          Reads in a set of classifications from the given file, assuming that each line is of the form 'nodeID,class'.
 void ReadClassification.readClassification(Graph graph, Classification labels, java.io.File input)
          Read from a given file a estimate of classifications for nodes in the given graph.
 java.lang.String PrintEstimateWriter.toString(Node node, Estimate e, Classification known)
          The equivalent of a print, where the output has been set to a string to be returned.
 

Uses of Classification in netkit.classifiers.relational
 

Methods in netkit.classifiers.relational with parameters of type Classification
 double[] Harmonic.getERM(Node n, Classification truth)
           
 

Uses of Classification in netkit.graph.edgecreator
 

Methods in netkit.graph.edgecreator that return Classification
 Classification EdgeCreatorImp.getLabeledNodes(DataSplit split, boolean useTrueAssort)
          Get a classification object which contains all the nodes to be used to calculate assortativity
 

Uses of Classification in netkit.graph.io
 

Methods in netkit.graph.io with parameters of type Classification
static void PajekGraph.saveGraph(Graph graph, java.io.PrintWriter pw, Classification truth, Estimate pred, java.lang.String labelAttribute)
           
static void PajekGraph.saveGraph(Graph graph, java.lang.String file, Classification truth, Estimate pred, java.lang.String labelAttribute)
          Save the given graph as a pajek graph, to the given file, using the classification and estimate and label.
 

Uses of Classification in netkit.inference
 

Methods in netkit.inference that return Classification
 Classification InferenceMethod.classify(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns)
           
 

Methods in netkit.inference with parameters of type Classification
 void InferenceMethodListener.classify(Classification c, int[] unknown)
           
 void InferenceMethod.classify(NetworkClassifier networkClassifier, java.util.Iterator<Node> unknowns, Classification result)
           
 void InferenceMethod.notifyListeners(Classification c, int[] unknown)
           
 void InferenceMethod.setTruth(Classification truth)
           
 

Uses of Classification in netkit.util
 

Methods in netkit.util with parameters of type Classification
static double[] GraphMetrics.calculateEdgeBasedAssortativityCoeff(Classification known)
           
static double[] GraphMetrics.calculateEdgeBasedAssortativityCoeff(Classification known, EdgeType et)
           
static double[] GraphMetrics.calculateNodeBasedAssortativityCoeff(Classification known)
           
static double[] GraphMetrics.calculateNodeBasedAssortativityCoeff(Classification known, EdgeType et)
           
 

Constructors in netkit.util with parameters of type Classification
ConfusionMatrix(Estimate predictions, Classification truth)
           
ROC(Estimate predictions, Classification truth, int posClass)