|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of Classification in netkit |
---|
Methods in netkit that return Classification | |
---|---|
Classification |
GraphStat.getPajekColor()
|
Uses of Classification in netkit.classifiers |
---|
Methods in netkit.classifiers that return Classification | |
---|---|
Classification |
Classification.asBinaryClassification(java.lang.String label)
|
Classification |
Estimate.asClassification()
|
Classification |
Classification.clone()
|
Classification |
NetworkLearning.getKnown()
|
Classification |
NetworkLearning.getTest()
|
Classification |
NetworkLearning.getTruth()
|
Classification |
DataView.getTruth()
|
Methods in netkit.classifiers with parameters of type Classification | |
---|---|
boolean |
ClassifierImp.classify(Node node,
Classification result)
|
boolean |
Classifier.classify(Node node,
Classification result)
|
double |
IncrementalAssessment.getIncrementalAccuracy(Node n,
Classification truth)
What would be the new accuracy if this node is labeled (after the initial model has been induced)? |
DataSplit |
DataView.getSplit(Classification known)
|
DataSplit |
DataView.getSplit(Classification known,
Classification test)
|
void |
DataView.setClassification(Classification known)
|
void |
NetworkLearning.setKnown(Classification k)
|
void |
NetworkLearning.setTest(Classification t)
|
void |
NetworkLearning.setTruth(Classification t)
|
void |
DataView.setTruth(Classification truth)
|
Constructors in netkit.classifiers with parameters of type Classification | |
---|---|
Estimate(Classification labels)
|
Uses of Classification in netkit.classifiers.active |
---|
Methods in netkit.classifiers.active that return Classification | |
---|---|
Classification |
GraphCentralityLabeling.getLabels()
|
Uses of Classification in netkit.classifiers.active.graphfunctions |
---|
Fields in netkit.classifiers.active.graphfunctions declared as Classification | |
---|---|
protected Classification |
ScoringFunction.labels
|
Uses of Classification in netkit.classifiers.io |
---|
Methods in netkit.classifiers.io that return Classification | |
---|---|
Classification |
ReadClassificationGeneric.readClassification(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Creates a new Classification object based on the graph, nodeType and attribute and then calls the generic readClassification method. |
Classification |
ReadClassification.readClassification(Graph graph,
java.lang.String nodeType,
AttributeCategorical attribute,
java.io.File input)
Read from a given file a estimate of classifications for nodes in the given graph. |
Methods in netkit.classifiers.io with parameters of type Classification | |
---|---|
void |
PrintEstimateWriter.print(Node node,
Estimate e,
Classification known)
Print an estimate of the given node using the given output format and the given current estimates and true labels. |
void |
PrintEstimateWriter.println(Node node,
Estimate e,
Classification known)
Print an estimate line of the given node using the given output format and the given current estimates and true labels. |
void |
ReadClassificationGeneric.readClassification(Graph graph,
Classification labels,
java.io.File input)
Reads in a set of classifications from the given file, assuming that each line is of the form 'nodeID,class'. |
void |
ReadClassification.readClassification(Graph graph,
Classification labels,
java.io.File input)
Read from a given file a estimate of classifications for nodes in the given graph. |
java.lang.String |
PrintEstimateWriter.toString(Node node,
Estimate e,
Classification known)
The equivalent of a print, where the output has been set to a string to be returned. |
Uses of Classification in netkit.classifiers.relational |
---|
Methods in netkit.classifiers.relational with parameters of type Classification | |
---|---|
double[] |
Harmonic.getERM(Node n,
Classification truth)
|
Uses of Classification in netkit.graph.edgecreator |
---|
Methods in netkit.graph.edgecreator that return Classification | |
---|---|
Classification |
EdgeCreatorImp.getLabeledNodes(DataSplit split,
boolean useTrueAssort)
Get a classification object which contains all the nodes to be used to calculate assortativity |
Uses of Classification in netkit.graph.io |
---|
Methods in netkit.graph.io with parameters of type Classification | |
---|---|
static void |
PajekGraph.saveGraph(Graph graph,
java.io.PrintWriter pw,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
|
static void |
PajekGraph.saveGraph(Graph graph,
java.lang.String file,
Classification truth,
Estimate pred,
java.lang.String labelAttribute)
Save the given graph as a pajek graph, to the given file, using the classification and estimate and label. |
Uses of Classification in netkit.inference |
---|
Methods in netkit.inference that return Classification | |
---|---|
Classification |
InferenceMethod.classify(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns)
|
Methods in netkit.inference with parameters of type Classification | |
---|---|
void |
InferenceMethodListener.classify(Classification c,
int[] unknown)
|
void |
InferenceMethod.classify(NetworkClassifier networkClassifier,
java.util.Iterator<Node> unknowns,
Classification result)
|
void |
InferenceMethod.notifyListeners(Classification c,
int[] unknown)
|
void |
InferenceMethod.setTruth(Classification truth)
|
Uses of Classification in netkit.util |
---|
Methods in netkit.util with parameters of type Classification | |
---|---|
static double[] |
GraphMetrics.calculateEdgeBasedAssortativityCoeff(Classification known)
|
static double[] |
GraphMetrics.calculateEdgeBasedAssortativityCoeff(Classification known,
EdgeType et)
|
static double[] |
GraphMetrics.calculateNodeBasedAssortativityCoeff(Classification known)
|
static double[] |
GraphMetrics.calculateNodeBasedAssortativityCoeff(Classification known,
EdgeType et)
|
Constructors in netkit.util with parameters of type Classification | |
---|---|
ConfusionMatrix(Estimate predictions,
Classification truth)
|
|
ROC(Estimate predictions,
Classification truth,
int posClass)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |