|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use PickLabelStrategy | |
---|---|
netkit.classifiers | |
netkit.classifiers.active |
Uses of PickLabelStrategy in netkit.classifiers |
---|
Fields in netkit.classifiers with type parameters of type PickLabelStrategy | |
---|---|
static Factory<PickLabelStrategy> |
NetworkLearning.alstrategies
|
Methods in netkit.classifiers with parameters of type PickLabelStrategy | |
---|---|
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split)
See fully parameterized method for details. |
Estimate |
NetworkLearner.runActiveLearner(PickLabelStrategy ps,
DataSplit split,
int picksPerIteration,
int maxPicks,
boolean learnWithTruth,
int depth)
Run active learning using the given parameters. |
Uses of PickLabelStrategy in netkit.classifiers.active |
---|
Classes in netkit.classifiers.active that implement PickLabelStrategy | |
---|---|
class |
ComparatorLabeler
This class does a comparison between multiple active learning strategies. |
class |
EmpiricalRiskMinimization
|
class |
EmpiricalRiskMinimizationHarmonic
|
class |
ERMHybrid
This class duses multiple active learning strategies to pick the next candidate(s). |
class |
GraphCentralityLabeling
Graph Centrality Labeling for Active Learning iteratively picks central nodes in a graph that are in clusters that have no known labels. |
class |
GreedyTruth
Picks next labels by getting the best jump in accuracy, knowing what the truth is. |
class |
PickLabelStrategyImp
|
class |
RandomLabeling
|
class |
UncertaintyLabeling
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |