Uses of Class
netkit.classifiers.active.PickLabelStrategy.LabelNode

Packages that use PickLabelStrategy.LabelNode
netkit.classifiers.active   
netkit.classifiers.active.graphfunctions   
 

Uses of PickLabelStrategy.LabelNode in netkit.classifiers.active
 

Methods in netkit.classifiers.active that return PickLabelStrategy.LabelNode
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 PickLabelStrategy.LabelNode[] PickLabelStrategy.getNodesToLabel(DataSplit currentSplit, Estimate currentPredictions, int maxPicks)
          Get the list of nodes to get labels for.
 PickLabelStrategy.LabelNode[] UncertaintyLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategyImp.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
           
 PickLabelStrategy.LabelNode[] PickLabelStrategy.peek(DataSplit currentSplit, Estimate currentPredictions, int numPeek)
          Get the list of nodes to get labels for...
 PickLabelStrategy.LabelNode[] GreedyTruth.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] GraphCentralityLabeling.peek(DataSplit split, Estimate predictions, int maxPicks)
           
 PickLabelStrategy.LabelNode[] EmpiricalRiskMinimizationHarmonic.peek(DataSplit split, Estimate predictions, int maxPicks)
           
protected  PickLabelStrategy.LabelNode[] UncertaintyLabeling.pickNodes(Estimate predictions, int maxPicks)
           
protected  PickLabelStrategy.LabelNode[] RandomLabeling.pickNodes(Estimate predictions, int maxPicks)
           
protected abstract  PickLabelStrategy.LabelNode[] PickLabelStrategyImp.pickNodes(Estimate predictions, int maxPicks)
          Get the list of nodes to get labels for.
protected  PickLabelStrategy.LabelNode[] GreedyTruth.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] GraphCentralityLabeling.pickNodes(Estimate predictions, int maxPicks)
          Picks the next nodes as the ones with the highest closeness centrality (normalized by cluster size) in a cluster that has no known labels.
protected  PickLabelStrategy.LabelNode[] ERMHybrid.pickNodes(Estimate predictions, int maxPicks)
          Maxpicks are ignored.
protected  PickLabelStrategy.LabelNode[] EmpiricalRiskMinimizationHarmonic.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] EmpiricalRiskMinimization.pickNodes(Estimate predictions, int maxPicks)
          Get the next nodes to label based on the empirical risk minimization principle.
protected  PickLabelStrategy.LabelNode[] ComparatorLabeler.pickNodes(Estimate predictions, int maxPicks)
          Maxpicks are ignored.
 

Methods in netkit.classifiers.active with parameters of type PickLabelStrategy.LabelNode
 int PickLabelStrategy.LabelNode.compareTo(PickLabelStrategy.LabelNode ln)
           
protected  double PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> list, PickLabelStrategy.LabelNode target)
           
 

Method parameters in netkit.classifiers.active with type arguments of type PickLabelStrategy.LabelNode
protected  double PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> sortedlist, int targetIndex)
           
protected  double PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> list, PickLabelStrategy.LabelNode target)
           
 

Uses of PickLabelStrategy.LabelNode in netkit.classifiers.active.graphfunctions
 

Methods in netkit.classifiers.active.graphfunctions with parameters of type PickLabelStrategy.LabelNode
 int ScoringFunction.compare(PickLabelStrategy.LabelNode n1, PickLabelStrategy.LabelNode n2)
          Standard comparator function.