|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use PickLabelStrategy.LabelNode | |
|---|---|
| netkit.classifiers.active | |
| netkit.classifiers.active.graphfunctions | |
| Uses of PickLabelStrategy.LabelNode in netkit.classifiers.active |
|---|
| Methods in netkit.classifiers.active that return PickLabelStrategy.LabelNode | |
|---|---|
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.getNodesToLabel(DataSplit currentSplit,
Estimate currentPredictions,
int maxPicks)
Get the list of nodes to get labels for. |
PickLabelStrategy.LabelNode[] |
UncertaintyLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
|
PickLabelStrategy.LabelNode[] |
PickLabelStrategy.peek(DataSplit currentSplit,
Estimate currentPredictions,
int numPeek)
Get the list of nodes to get labels for... |
PickLabelStrategy.LabelNode[] |
GreedyTruth.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
GraphCentralityLabeling.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimizationHarmonic.peek(DataSplit split,
Estimate predictions,
int maxPicks)
|
protected PickLabelStrategy.LabelNode[] |
UncertaintyLabeling.pickNodes(Estimate predictions,
int maxPicks)
|
protected PickLabelStrategy.LabelNode[] |
RandomLabeling.pickNodes(Estimate predictions,
int maxPicks)
|
protected abstract PickLabelStrategy.LabelNode[] |
PickLabelStrategyImp.pickNodes(Estimate predictions,
int maxPicks)
Get the list of nodes to get labels for. |
protected PickLabelStrategy.LabelNode[] |
GreedyTruth.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
GraphCentralityLabeling.pickNodes(Estimate predictions,
int maxPicks)
Picks the next nodes as the ones with the highest closeness centrality (normalized by cluster size) in a cluster that has no known labels. |
protected PickLabelStrategy.LabelNode[] |
ERMHybrid.pickNodes(Estimate predictions,
int maxPicks)
Maxpicks are ignored. |
protected PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimizationHarmonic.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
EmpiricalRiskMinimization.pickNodes(Estimate predictions,
int maxPicks)
Get the next nodes to label based on the empirical risk minimization principle. |
protected PickLabelStrategy.LabelNode[] |
ComparatorLabeler.pickNodes(Estimate predictions,
int maxPicks)
Maxpicks are ignored. |
| Methods in netkit.classifiers.active with parameters of type PickLabelStrategy.LabelNode | |
|---|---|
int |
PickLabelStrategy.LabelNode.compareTo(PickLabelStrategy.LabelNode ln)
|
protected double |
PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> list,
PickLabelStrategy.LabelNode target)
|
| Method parameters in netkit.classifiers.active with type arguments of type PickLabelStrategy.LabelNode | |
|---|---|
protected double |
PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> sortedlist,
int targetIndex)
|
protected double |
PickLabelStrategyImp.getAverageRank(java.util.List<? extends PickLabelStrategy.LabelNode> list,
PickLabelStrategy.LabelNode target)
|
| Uses of PickLabelStrategy.LabelNode in netkit.classifiers.active.graphfunctions |
|---|
| Methods in netkit.classifiers.active.graphfunctions with parameters of type PickLabelStrategy.LabelNode | |
|---|---|
int |
ScoringFunction.compare(PickLabelStrategy.LabelNode n1,
PickLabelStrategy.LabelNode n2)
Standard comparator function. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||