Uses of Class
netkit.util.Configuration

Packages that use Configuration
netkit.classifiers   
netkit.classifiers.active   
netkit.classifiers.aggregators   
netkit.classifiers.nonrelational   
netkit.classifiers.relational   
netkit.inference   
netkit.util   
 

Uses of Configuration in netkit.classifiers
 

Methods in netkit.classifiers that return Configuration
 Configuration NetworkLearning.getDefaultConfiguration()
           
 Configuration ClassifierImp.getDefaultConfiguration()
           
 

Methods in netkit.classifiers with parameters of type Configuration
 void NetworkLearning.configure(Configuration conf)
           
 void ClassifierImp.configure(Configuration config)
           
 

Uses of Configuration in netkit.classifiers.active
 

Methods in netkit.classifiers.active that return Configuration
 Configuration UncertaintyLabeling.getDefaultConfiguration()
           
 Configuration PickLabelStrategyImp.getDefaultConfiguration()
           
 Configuration GreedyTruth.getDefaultConfiguration()
           
 Configuration GraphCentralityLabeling.getDefaultConfiguration()
           
 Configuration ERMHybrid.getDefaultConfiguration()
           
 Configuration EmpiricalRiskMinimizationHarmonic.getDefaultConfiguration()
           
 Configuration EmpiricalRiskMinimization.getDefaultConfiguration()
           
 

Methods in netkit.classifiers.active with parameters of type Configuration
 void UncertaintyLabeling.configure(Configuration config)
           
 void PickLabelStrategyImp.configure(Configuration config)
           
 void GreedyTruth.configure(Configuration config)
           
 void GraphCentralityLabeling.configure(Configuration config)
           
 void ERMHybrid.configure(Configuration config)
           
 void EmpiricalRiskMinimizationHarmonic.configure(Configuration config)
           
 void EmpiricalRiskMinimization.configure(Configuration config)
           
 void ComparatorLabeler.configure(Configuration config)
           
 

Uses of Configuration in netkit.classifiers.aggregators
 

Methods in netkit.classifiers.aggregators with parameters of type Configuration
 Aggregator AggregatorFactory.get(java.lang.String name, Configuration defaultConf)
          Get an instance of the fully named aggregator using a given Configuration map.
 Aggregator AggregatorFactory.get(java.lang.String name, EdgeType[] edgeTypes, Attribute attribute, Configuration defaultConf)
          This is not yet supported.
 Aggregator AggregatorFactory.get(java.lang.String name, EdgeType[] edgeTypes, Attribute attribute, double value, Configuration defaultConf)
          This is not yet supported.
 Aggregator AggregatorFactory.get(java.lang.String name, EdgeType edgeType, Attribute attribute, Configuration defaultConf)
          Get an instance of the named general attribute aggregator for the given relation and attribute.
 Aggregator AggregatorFactory.get(java.lang.String name, EdgeType edgeType, Attribute attribute, double value, Configuration defaultConf)
          Get an instance of the named attribute aggregator-by-value for the given relation, attribute and value.
 

Uses of Configuration in netkit.classifiers.nonrelational
 

Methods in netkit.classifiers.nonrelational that return Configuration
 Configuration LocalMetaClassifier.getDefaultConfiguration()
          Default configuration uses only the naive Bayes classifier in addition to any defaults from the superclass
 Configuration ExternalPrior.getDefaultConfiguration()
          Sets a default configuration where the reader is of type 'rainbow', which should resolve to the ReadEstimateRainbow class in the 'readestimate.properties' file.
 

Methods in netkit.classifiers.nonrelational with parameters of type Configuration
 void LocalWeka.configure(Configuration config)
          Configure this classifier by getting the Weka classifier object using the classifier and options properties in addition to anything used by the superclass.
 void LocalMetaClassifier.configure(Configuration config)
          Configures the classifier by getting the list of classifiers to use (comma-separated list in the NetworkLearning.LC_PREFIX property.
 void ExternalPrior.configure(Configuration config)
          Configure this classifier using the passed-in configuration.
 

Uses of Configuration in netkit.classifiers.relational
 

Methods in netkit.classifiers.relational that return Configuration
 Configuration WeightedVoteRelationalNeighbor.getDefaultConfiguration()
          Creates and returns a default configuration, which only includes the laplaceonce, laplace and lfactor properties (the only ones used in this classifier as nothing else is not configurable).
 Configuration ProbRelationalNeighbor.getDefaultConfiguration()
           
 Configuration NetworkOnlyBayes.getDefaultConfiguration()
          Create a default configuration for this classifier.
 Configuration NetworkMetaClassifier.getDefaultConfiguration()
          Get the detault configuration of using a naive Bayes classifier both as the single non-relational and the single relational classifier..
 Configuration NetworkClassifierImp.getDefaultConfiguration()
          Default configuration for relational learners.
 Configuration ClassDistribRelNeighbor.getDefaultConfiguration()
          Get the detault configuration of using a cosine distance function, and aggregating only on the class attribute using the ratio aggregator.
 

Methods in netkit.classifiers.relational with parameters of type Configuration
 void WeightedVoteRelationalNeighbor.configure(Configuration conf)
          Configures the classifier with respect to laplace correction: whether to have it (and what kind) and whether tu use it only on the first iteration of collective inferencing.
 void ProbRelationalNeighbor.configure(Configuration conf)
          This does not use the configuration.
 void NetworkWeka.configure(Configuration config)
          Configure this classifier by getting the Weka classifier object using the classifier and options properties in addition to anything used by the superclass.
 void NetworkOnlyBayes.configure(Configuration config)
          Configures this classifier.
 void NetworkMetaClassifier.configure(Configuration config)
          Configure this classifier by getting the Weka classifier object using the classifier and options properties in addition to anything used by the superclass.
 void NetworkClassifierImp.configure(Configuration config)
          Configure the classifier.
 void ClassDistribRelNeighbor.configure(Configuration config)
          Configure this classifier object.
 

Uses of Configuration in netkit.inference
 

Methods in netkit.inference that return Configuration
 Configuration RelaxationLabeling.getDefaultConfiguration()
           
 Configuration NullInference.getDefaultConfiguration()
           
 Configuration IterativeClassification.getDefaultConfiguration()
           
 Configuration InferenceMethod.getDefaultConfiguration()
           
 Configuration GibbsSampling.getDefaultConfiguration()
           
 

Methods in netkit.inference with parameters of type Configuration
 void RelaxationLabeling.configure(Configuration config)
           
 void InferenceMethod.configure(Configuration config)
           
 void GibbsSampling.configure(Configuration config)
           
 

Uses of Configuration in netkit.util
 

Methods in netkit.util that return Configuration
 Configuration Factory.getConfig(java.lang.String stem)
           
static Configuration Configuration.getConfiguration(java.util.ResourceBundle bundle, java.lang.String name)
           
 Configuration Configurable.getDefaultConfiguration()
           
 Configuration Configuration.getParent()
           
 Configuration Configuration.getRoot()
           
 

Methods in netkit.util with parameters of type Configuration
 void Configurable.configure(Configuration config)
           
 T Factory.get(java.lang.String name, Configuration defaultConf)
           
 void Configuration.setParent(Configuration defaultConfiguration)
           
 

Constructors in netkit.util with parameters of type Configuration
Configuration(Configuration defaults)
           
Configuration(Configuration defaults, java.io.InputStream in)