netkit.classifiers.active.graphfunctions
Class LabelClosenessRank
java.lang.Object
netkit.classifiers.active.graphfunctions.ScoringFunction
netkit.classifiers.active.graphfunctions.ReverseScoringFunction
netkit.classifiers.active.graphfunctions.LabelClosenessRank
- All Implemented Interfaces:
- java.util.Comparator<PickLabelStrategy.LabelNode>
public class LabelClosenessRank
- extends ReverseScoringFunction
For label closeness, we want to pick the largest closeness first, so that
means we reverse normal sorting order
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface java.util.Comparator |
equals |
LabelClosenessRank
public LabelClosenessRank()
clusterBased
public boolean clusterBased()
- Description copied from class:
ScoringFunction
- Is this scoring function cluster based (does it need clustering).
- Overrides:
clusterBased
in class ScoringFunction
- Returns:
- false (default)
toString
public java.lang.String toString()
- Specified by:
toString
in class ScoringFunction
score
public double score(ModularityClusterer.Cluster c,
Node n)
- Specified by:
score
in class ScoringFunction
update
public double update(ModularityClusterer.Cluster c,
double currentScore,
Node n,
Node[] newPicks)
- Description copied from class:
ScoringFunction
- Return the new score of a node given its old score and a newly labeled node.
By default a scoring function is not updateable and will just return the
current score.
- Overrides:
update
in class ScoringFunction
- Returns:
- the current score.
updateable
public boolean updateable()
- Description copied from class:
ScoringFunction
- returns whether the score of a node will change if more nodes are labeled.
The default is that a scoring function is not updateable.
- Overrides:
updateable
in class ScoringFunction
- Returns:
- false.